Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Clin Endocrinol Metab ; 108(8): e512-e520, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36808247

RESUMO

CONTEXT: The diagnosis of familial partial lipodystrophy (FPLD) is currently made based on clinical judgment. OBJECTIVE: There is a need for objective diagnostic tools that can diagnose FPLD accurately. METHODS: We have developed a new method that uses measurements from pelvic magnetic resonance imaging (MRI) at the pubis level. We evaluated measurements from a lipodystrophy cohort (n = 59; median age [25th-75th percentiles]: 32 [24-44]; 48 females and 11 males) and age- and sex-matched controls (n = 29). Another dataset included MRIs from 289 consecutive patients. RESULTS: Receiver operating characteristic curve analysis revealed a potential cut-point of ≤13 mm gluteal fat thickness for the diagnosis of FPLD. A combination of gluteal fat thickness ≤13 mm and pubic/gluteal fat ratio ≥2.5 (based on a receiver operating characteristic curve) provided 96.67% (95% CI, 82.78-99.92) sensitivity and 91.38% (95% CI, 81.02-97.14) specificity in the overall cohort and 100.00% (95% CI, 87.23-100.00) sensitivity and 90.00% (95% CI, 76.34-97.21) specificity in females for the diagnosis of FPLD. When this approach was tested in a larger dataset of random patients, FPLD was differentiated from subjects without lipodystrophy with 96.67% (95% CI, 82.78-99.92) sensitivity and 100.00% (95% CI, 98.73-100.00) specificity. When only women were analyzed, the sensitivity and the specificity was 100.00% (95% CI, 87.23-100.00 and 97.95-100.00, respectively). The performance of gluteal fat thickness and pubic/gluteal fat thickness ratio was comparable to readouts performed by radiologists with expertise in lipodystrophy. CONCLUSION: The combined use of gluteal fat thickness and pubic/gluteal fat ratio from pelvic MRI is a promising method to diagnose FPLD that can reliably identify FPLD in women. Our findings need to be tested in larger populations and prospectively.


Assuntos
Lipodistrofia Parcial Familiar , Lipodistrofia , Masculino , Humanos , Feminino , Lipodistrofia Parcial Familiar/diagnóstico por imagem , Lipodistrofia Parcial Familiar/patologia , Lipodistrofia/patologia , Imageamento por Ressonância Magnética , Osso Púbico , Curva ROC , Pelve/diagnóstico por imagem , Pelve/patologia
2.
Hepatology ; 77(4): 1319-1334, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029129

RESUMO

BACKGROUND AND AIMS: Receptor-interacting protein kinase 3 (RIPK3) mediates NAFLD progression, but its metabolic function is unclear. Here, we aimed to investigate the role of RIPK3 in modulating mitochondria function, coupled with lipid droplet (LD) architecture in NAFLD. APPROACH AND RESULTS: Functional studies evaluating mitochondria and LD biology were performed in wild-type (WT) and Ripk3-/- mice fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks and in CRISPR-Cas9 Ripk3 -null fat-loaded immortalized hepatocytes. The association between hepatic perilipin (PLIN) 1 and 5, RIPK3, and disease severity was also addressed in a cohort of patients with NAFLD and in PLIN1 -associated familial partial lipodystrophy. Ripk3 deficiency rescued impairment in mitochondrial biogenesis, bioenergetics, and function in CDAA diet-fed mice and fat-loaded hepatocytes. Ripk3 deficiency was accompanied by a strong upregulation of antioxidant systems, leading to diminished oxidative stress upon fat loading both in vivo and in vitro. Strikingly, Ripk3-/- hepatocytes displayed smaller size LD in higher numbers than WT cells after incubation with free fatty acids. Ripk3 deficiency upregulated adipocyte and hepatic levels of LD-associated proteins PLIN1 and PLIN5. PLIN1 upregulation controlled LD structure and diminished mitochondrial stress upon free fatty acid overload in Ripk3-/- hepatocytes and was associated with diminished human NAFLD severity. Conversely, a pathogenic PLIN1 frameshift variant was associated with NAFLD and fibrosis, as well as with increased hepatic RIPK3 levels in familial partial lipodystrophy. CONCLUSIONS: Ripk3 deficiency restores mitochondria bioenergetics and impacts LD dynamics. RIPK3 inhibition is promising in ameliorating NAFLD.


Assuntos
Lipodistrofia Parcial Familiar , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Gotículas Lipídicas , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Fígado/patologia , Hepatócitos/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
3.
J Clin Endocrinol Metab ; 107(2): 346-362, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34614176

RESUMO

CONTEXT: Familial partial lipodystrophy (FPL), Dunnigan variety is characterized by skeletal muscle hypertrophy and insulin resistance besides fat loss from the extremities. The cause for the muscle hypertrophy and its functional consequences is not known. OBJECTIVE: To compare muscle strength and endurance, besides muscle protein synthesis rate between subjects with FPL and matched controls (n = 6 in each group). In addition, we studied skeletal muscle mitochondrial function and gene expression pattern to help understand the mechanisms for the observed differences. METHODS: Body composition by dual-energy X-ray absorptiometry, insulin sensitivity by minimal modelling, assessment of peak muscle strength and fatigue, skeletal muscle biopsy and calculation of muscle protein synthesis rate, mitochondrial respirometry, skeletal muscle transcriptome, proteome, and gene set enrichment analysis. RESULTS: Despite increased muscularity, FPL subjects did not demonstrate increased muscle strength but had earlier fatigue on chest press exercise. Decreased mitochondrial state 3 respiration in the presence of fatty acid substrate was noted, concurrent to elevated muscle lactate and decreased long-chain acylcarnitine. Based on gene transcriptome, there was significant downregulation of many critical metabolic pathways involved in mitochondrial biogenesis and function. Moreover, the overall pattern of gene expression was indicative of accelerated aging in FPL subjects. A lower muscle protein synthesis and downregulation of gene transcripts involved in muscle protein catabolism was observed. CONCLUSION: Increased muscularity in FPL is not due to increased muscle protein synthesis and is likely due to reduced muscle protein degradation. Impaired mitochondrial function and altered gene expression likely explain the metabolic abnormalities and skeletal muscle dysfunction in FPL subjects.


Assuntos
Lipodistrofia Parcial Familiar/fisiopatologia , Mitocôndrias Musculares/patologia , Músculo Esquelético/fisiopatologia , Absorciometria de Fóton , Adulto , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Resistência Física/fisiologia , Proteólise , Adulto Jovem
4.
Front Endocrinol (Lausanne) ; 12: 684182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168618

RESUMO

Background: Familial partial lipodystrophy type 3 (FPLD3) is a very rare autosomal dominant genetic disorder which is caused by mutations in the peroxisome proliferator activated receptor gamma (PPARG) gene. It is characterized by a partial loss of adipose tissue leading to subnormal leptin secretion and metabolic complications. Metreleptin, a synthetic analogue of human leptin, is an effective treatment for generalized lipodystrophies, but the evidence for efficacy in patients with FPLD3 is scarce. Case Presentation: We present a 61-year-old woman, initially misdiagnosed as type 1 diabetes since the age of 29, with severe insulin resistance, who gradually displayed a more generalized form of lipoatrophy and extreme hypertriglyceridemia, hypertension and multiple manifestations of cardiovascular disease. She was found to carry a novel mutation leading to PPARGGlu157Gly variant. After six months of metreleptin treatment, HbA1c decreased from 10 to 7.9% and fasting plasma triglycerides were dramatically reduced from 2.919 mg/dl to 198 mg/dl. Conclusions: This case highlights the importance of early recognition of FPLD syndromes otherwise frequently observed as difficult-to-classify and manages diabetes cases, in order to prevent cardiovascular complications. Metreleptin may be an effective treatment for FPLD3.


Assuntos
Leptina/análogos & derivados , Lipodistrofia Parcial Familiar/tratamento farmacológico , Diabetes Mellitus Tipo 1 , Erros de Diagnóstico , Feminino , Hemoglobinas Glicadas/análise , Humanos , Resistência à Insulina , Leptina/sangue , Leptina/uso terapêutico , Lipodistrofia Parcial Familiar/sangue , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Pessoa de Meia-Idade , Mutação , Triglicerídeos/sangue
5.
Front Endocrinol (Lausanne) ; 12: 675096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953703

RESUMO

Purpose: Familial partial lipodystrophy type 2 (FPLD2) patients generally develop a wide variety of severe metabolic complications. However, they are not usually affected by primary cardiomyopathy and conduction system disturbances, although a few cases of FPLD2 and cardiomyopathy have been reported in the literature. These were all due to amino-terminal heterozygous lamin A/C mutations, which are considered as new forms of overlapping syndromes. Methods and Results: Here we report the identification of a female patient with FPLD2 due to a heterozygous missense variant c.604G>A in the exon 3 of the LMNA gene, leading to amino acid substitution (p.Glu202Lys) in the central alpha-helical rod domain of lamin A/C with a high propensity to form coiled-coil dimers. The patient's cardiac evaluations that followed the genetic diagnosis revealed cardiac rhythm disturbances which were promptly treated pharmacologically. Conclusions: This report supports the idea that there are "atypical forms" of FPLD2 with cardiomyopathy, especially when a pathogenic variant affects the lamin A/C head or alpha-helical rod domain. It also highlights how increased understanding of the genotype-phenotype correlation could help clinicians to schedule personalized monitoring of the lipodystrophic patient, in order to prevent uncommon but possible devastating manifestations, including arrhythmias and sudden death.


Assuntos
Estudos de Associação Genética , Lamina Tipo A/genética , Laminas/genética , Lipodistrofia Parcial Familiar/patologia , Mutação de Sentido Incorreto , Adulto , Feminino , Humanos , Lipodistrofia Parcial Familiar/genética , Prognóstico
6.
J Cell Mol Med ; 24(13): 7660-7669, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519441

RESUMO

The transcription factor peroxisome proliferator-activated receptor gamma (PPARG) is essential for placental development, and alterations in its expression and/or activity are associated with human placental pathologies such as pre-eclampsia or IUGR. However, the molecular regulation of PPARG in cytotrophoblast differentiation and in the underlying mesenchyme remains poorly understood. Our main goal was to study the impact of mutations in the ligand-binding domain (LBD) of the PPARG gene on cytotrophoblast fusion (PPARGE352Q ) and on fibroblast cell migration (PPARGR262G /PPARGL319X ). Our results showed that, compared to cells with reconstituted PPARGWT , transfection with PPARGE352Q led to significantly lower PPARG activity and lower restoration of trophoblast fusion. Likewise, compared to PPARGWT fibroblasts, PPARGR262G /PPARGL319X fibroblasts demonstrated significantly inhibited cell migration. In conclusion, we report that single missense or nonsense mutations in the LBD of PPARG significantly inhibit cell fusion and migration processes.


Assuntos
Movimento Celular , Fibroblastos/patologia , Lipodistrofia Parcial Familiar/genética , Mutação/genética , PPAR gama/química , PPAR gama/genética , Trofoblastos/patologia , Animais , Fusão Celular , Fibroblastos/metabolismo , Humanos , Ligantes , Lipodistrofia Parcial Familiar/patologia , Camundongos , Modelos Moleculares , Células NIH 3T3 , PPAR gama/metabolismo , Domínios Proteicos , Trofoblastos/metabolismo
7.
Stem Cell Res ; 42: 101651, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794942

RESUMO

Familial partial lipodystrophy type 2 (FPLD2) is a rare autosomal dominant metabolic disorder caused by heterozygous mutations in the LMNA gene, which encodes for the lamin A/C. A human induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells (PBMCs) of a 30 year-old male patient with FPLD2 who had a heterozygous p.R349W (c.1045C > T) mutation in the LMNA gene using non-integrating episomal vector technique. This iPSC line offers a useful resource to investigate pathogenic mechanisms in FPLD2, as well as a cell-based model for drug development to treat FPLD2.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Adulto , Humanos , Lipodistrofia Parcial Familiar/patologia , Masculino , Mutação
8.
Exp Mol Med ; 51(8): 1-17, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375660

RESUMO

Type-2 Familial Partial Lipodystrophy is caused by LMNA mutations. Patients gradually lose subcutaneous fat from the limbs, while they accumulate adipose tissue in the face and neck. Several studies have demonstrated that autophagy is involved in the regulation of adipocyte differentiation and the maintenance of the balance between white and brown adipose tissue. We identified deregulation of autophagy in laminopathic preadipocytes before induction of differentiation. Moreover, in differentiating white adipocyte precursors, we observed impairment of large lipid droplet formation, altered regulation of adipose tissue genes, and expression of the brown adipose tissue marker UCP1. Conversely, in lipodystrophic brown adipocyte precursors induced to differentiate, we noticed activation of autophagy, formation of enlarged lipid droplets typical of white adipocytes, and dysregulation of brown adipose tissue genes. In agreement with these in vitro results indicating conversion of FPLD2 brown preadipocytes toward the white lineage, adipose tissue from FPLD2 patient neck, an area of brown adipogenesis, showed a white phenotype reminiscent of its brown origin. Moreover, in vivo morpho-functional evaluation of fat depots in the neck area of three FPLD2 patients by PET/CT analysis with cold stimulation showed the absence of brown adipose tissue activity. These findings highlight a new pathogenetic mechanism leading to improper fat distribution in lamin A-linked lipodystrophies and show that both impaired white adipocyte turnover and failure of adipose tissue browning contribute to disease.


Assuntos
Adipócitos Marrons/fisiologia , Adipócitos/patologia , Autofagia/fisiologia , Diferenciação Celular , Transdiferenciação Celular , Lipodistrofia Parcial Familiar/patologia , Adipócitos/fisiologia , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Adulto , Transdiferenciação Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/fisiopatologia , Pessoa de Meia-Idade , Adulto Jovem
9.
Eur Rev Med Pharmacol Sci ; 23(13): 5581-5594, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31298310

RESUMO

OBJECTIVE: The aim of this qualitative review is to provide an update on the current understanding of the genetic determinants of lipedema and to develop a genetic test to differentiate lipedema from other diagnoses. MATERIALS AND METHODS: An electronic search was conducted in MEDLINE, PubMed, and Scopus for articles published in English up to March 2019. Lipedema and similar disorders included in the differential diagnosis of lipedema were searched in the clinical synopsis section of OMIM, in GeneCards, Orphanet, and MalaCards. RESULTS: The search identified several genetic factors related to the onset of lipedema and highlighted the utility of developing genetic diagnostic testing to help differentiate lipedema from other diagnoses. CONCLUSIONS: No genetic tests or guidelines for molecular diagnosis of lipedema are currently available, despite the fact that genetic testing is fundamental for the differential diagnosis of lipedema against Mendelian genetic obesity, primary lymphedema, and lipodystrophies.


Assuntos
Lipedema/diagnóstico , Aldeído Desidrogenase/genética , Bases de Dados Factuais , Histona-Lisina N-Metiltransferase/genética , Humanos , Lipedema/genética , Lipedema/patologia , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Perilipina-1/genética , Índice de Gravidade de Doença , Transativadores/genética
10.
Mol Metab ; 20: 115-127, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30595551

RESUMO

OBJECTIVE: The nuclear receptor PPARγ is the master regulator of adipocyte differentiation, distribution, and function. In addition, PPARγ induces terminal differentiation of several epithelial cell lineages, including colon epithelia. Loss-of-function mutations in PPARG result in familial partial lipodystrophy subtype 3 (FPDL3), a rare condition characterized by aberrant adipose tissue distribution and severe metabolic complications, including diabetes. Mutations in PPARG have also been reported in sporadic colorectal cancers, but the significance of these mutations is unclear. Studying these natural PPARG mutations provides valuable insights into structure-function relationships in the PPARγ protein. We functionally characterized a novel FPLD3-associated PPARγ L451P mutation in helix 9 of the ligand binding domain (LBD). Interestingly, substitution of the adjacent amino acid K450 was previously reported in a human colon carcinoma cell line. METHODS: We performed a detailed side-by-side functional comparison of these two PPARγ mutants. RESULTS: PPARγ L451P shows multiple intermolecular defects, including impaired cofactor binding and reduced RXRα heterodimerisation and subsequent DNA binding, but not in DBD-LBD interdomain communication. The K450Q mutant displays none of these functional defects. Other colon cancer-associated PPARγ mutants displayed diverse phenotypes, ranging from complete loss of activity to wildtype activity. CONCLUSIONS: Amino acid changes in helix 9 can differently affect LBD integrity and function. In addition, FPLD3-associated PPARγ mutations consistently cause intra- and/or intermolecular defects; colon cancer-associated PPARγ mutations on the other hand may play a role in colon cancer onset and progression, but this is not due to their effects on the most well-studied functional characteristics of PPARγ.


Assuntos
Lipodistrofia Parcial Familiar/genética , Mutação de Sentido Incorreto , PPAR gama/genética , Adulto , Sítios de Ligação , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Células HEK293 , Humanos , Lipodistrofia Parcial Familiar/patologia , PPAR gama/química , PPAR gama/metabolismo , Fenótipo , Multimerização Proteica
11.
Nucleus ; 9(1): 392-397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131000

RESUMO

Polycystic ovary syndrome (PCOS) is a common disorder with a high phenotypic variability. Frequently, it is associated with a mild to moderate insulin resistance (IR) caused by an interaction between polygenic diathesis and the environment. However, PCOS may be a complication of an underlying syndrome of severe IR such as insulin receptor autoantibodies, mutations in the insulin receptor or in the signalling pathway downstream from the insulin receptor or, most frequently, a defect in function or in the development of the subcutaneous adipose tissue. Such conditions are clinically characterized by lipodystrophy. Lipodystrophy in some cases is produced by a single-gene defect. In our experience, PCOS secondary to a missense mutation in the LMNA gene, known as familial partial lipodystrophy type 2 (FPLD2), is the most frequent form of PCOS secondary to severe IR due to genetically determined lipodystrophy. These forms should be identified as they benefit from tailored therapies.


Assuntos
Lipodistrofia Parcial Familiar , Síndrome do Ovário Policístico , Feminino , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Lipodistrofia Parcial Familiar/terapia , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Síndrome do Ovário Policístico/terapia
12.
Hum Mol Genet ; 27(8): 1447-1459, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29438482

RESUMO

The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.


Assuntos
Células Endoteliais/metabolismo , Proteínas Fetais/genética , Regulação da Expressão Gênica no Desenvolvimento , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Proteínas do Grupo Polycomb/genética , Proteínas com Domínio T/genética , Adolescente , Adulto , Estudos de Casos e Controles , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Endoteliais/patologia , Feminino , Proteínas Fetais/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Masculino , Mesoderma/metabolismo , Mesoderma/patologia , Pessoa de Meia-Idade , Mutação , Proteínas do Grupo Polycomb/metabolismo , Cultura Primária de Células , Ligação Proteica , Transdução de Sinais , Proteínas com Domínio T/metabolismo
13.
Biochem Biophys Res Commun ; 495(1): 254-260, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29108996

RESUMO

Lipodystrophies are disorders that directly affect lipid metabolism and storage. Familial partial lipodystrophy type 2 (FPLD2) is caused by an autosomal dominant mutation in the LMNA gene. FPLD2 is characterized by abnormal adipose tissue distribution. This leads to metabolic deficiencies, such as insulin-resistant diabetes mellitus and hypertriglyceridemia. Here we have derived iPSC lines from two individuals diagnosed with FPLD2, and differentiated these cells into adipocytes. Adipogenesis and certain adipocyte functions are impaired in FPLD2-adipocytes. Consistent with the lipodystrophic phenotype, FPLD2-adipocytes appear to accumulate markers of autophagy and catabolize triglycerides at higher levels than control adipocytes. These data are suggestive of a mechanism causing the lack of adipose tissue in FPLD2 patients.


Assuntos
Adipócitos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Lamina Tipo A/genética , Metabolismo dos Lipídeos , Lipodistrofia Parcial Familiar/genética , Mutação Puntual , Adipócitos/metabolismo , Adipogenia , Autofagia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Resistência à Insulina , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Triglicerídeos/metabolismo
14.
Adipocyte ; 6(4): 259-276, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28872940

RESUMO

Dysregulation of adipose tissue metabolism is associated with multiple metabolic disorders. One such disease, known as Dunnigan-type familial partial lipodystrophy (FPLD2) is characterized by defective fat metabolism and storage. FPLD2 is caused by a specific subset of mutations in the LMNA gene. The mechanisms by which LMNA mutations lead to the adipose specific FPLD2 phenotype have yet to be determined in detail. We used RNA-Seq analysis to assess the effects of wild-type (WT) and mutant (R482W) lamin A on the expression profile of differentiating 3T3-L1 mouse preadipocytes and identified Itm2a as a gene that was upregulated at 36 h post differentiation induction in these cells. In this study we identify Itm2a as a novel modulator of adipogenesis and show that endogenous Itm2a expression is transiently downregulated during induction of 3T3-L1 differentiation. Itm2a overexpression was seen to moderately inhibit differentiation of 3T3-L1 preadipocytes while shRNA mediated knockdown of Itm2a significantly enhanced 3T3-L1 differentiation. Investigation of PPARγ levels indicate that this enhanced adipogenesis is mediated through the stabilization of the PPARγ protein at specific time points during differentiation. Finally, we demonstrate that Itm2a knockdown is sufficient to rescue the inhibitory effects of lamin A WT and R482W mutant overexpression on 3T3-L1 differentiation. This suggests that targeting of Itm2a or its related pathways, including autophagy, may have potential as a therapy for FPLD2.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular/genética , Inativação Gênica , Lamina Tipo A/genética , Proteínas de Membrana/genética , Células 3T3-L1 , Adipogenia , Animais , Fibroblastos/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/patologia , Camundongos , Regiões Promotoras Genéticas
15.
J Cell Biol ; 216(9): 2731-2743, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28751304

RESUMO

Mutations in the Lamin A/C (LMNA) gene-encoding nuclear LMNA cause laminopathies, which include partial lipodystrophies associated with metabolic syndromes. The lipodystrophy-associated LMNA p.R482W mutation is known to impair adipogenic differentiation, but the mechanisms involved are unclear. We show in this study that the lamin A p.R482W hot spot mutation prevents adipogenic gene expression by epigenetically deregulating long-range enhancers of the anti-adipogenic MIR335 microRNA gene in human adipocyte progenitor cells. The R482W mutation results in a loss of function of differentiation-dependent lamin A binding to the MIR335 locus. This impairs H3K27 methylation and instead favors H3K27 acetylation on MIR335 enhancers. The lamin A mutation further promotes spatial clustering of MIR335 enhancer and promoter elements along with overexpression of the MIR355 gene after adipogenic induction. Our results link a laminopathy-causing lamin A mutation to an unsuspected deregulation of chromatin states and spatial conformation of an miRNA locus critical for adipose progenitor cell fate.


Assuntos
Adipócitos , Adipogenia/genética , Epigênese Genética , Fibroblastos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , MicroRNAs/genética , Mutação , Células-Tronco , Acetilação , Adipócitos/metabolismo , Adipócitos/patologia , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Fibroblastos/metabolismo , Fibroblastos/patologia , Predisposição Genética para Doença , Histonas/metabolismo , Humanos , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Lipodistrofia Parcial Familiar/fisiopatologia , Metilação , MicroRNAs/química , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Fenótipo , Regiões Promotoras Genéticas , Células-Tronco/metabolismo , Células-Tronco/patologia , Relação Estrutura-Atividade , Regulação para Cima
16.
Neuromuscul Disord ; 27(10): 923-930, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28754454

RESUMO

Lipodystrophy is a heterogeneous group of disorders characterized by loss of adipose tissue. Here, we report on clinical spectra of neuromuscular manifestations of Turkish patients with lipodystrophy. Seventy-four patients with lipodystrophy and 20 healthy controls were included. Peripheral sensorimotor neuropathy was a common finding (67.4%) in lipodystrophic patients with diabetes. Neuropathic foot ulcers were observed in 4 patients. Drop foot developed in 1 patient with congenital generalized lipodystrophy type 1. Muscle symptoms and hypertrophy were consistent findings in congenital generalized lipodystrophy (21/21) and familial partial lipodystrophy (25/34); on the other hand, overt myopathy with elevated creatine kinase activity was a distinctive characteristic of congenital generalized lipodystrophy type 4. Muscle biopsies revealed myopathic changes at different levels. Accumulation of triglycerides was observed which contributes to insulin resistance. All patients with congenital generalized lipodystrophy suffered from tight Achilles tendons at various levels. Scoliosis was observed in congenital generalized lipodystrophy type 4 (2/2) and familial partial lipodystrophy type 2 (2/17). Atlantoaxial instability was unique to congenital generalized lipodystrophy type 4 (2/2). Bone cysts were detected in congenital generalized lipodystrophy type 1 (7/10) and congenital generalized lipodystrophy type 2 (2/8). Our study suggests that lipodystrophies are associated with a wide spectrum of neuromuscular abnormalities.


Assuntos
Tecido Adiposo/patologia , Lipodistrofia Generalizada Congênita/patologia , Lipodistrofia Parcial Familiar/patologia , Doenças Musculares/patologia , Adolescente , Adulto , Feminino , Humanos , Resistência à Insulina/fisiologia , Lipodistrofia Generalizada Congênita/diagnóstico , Lipodistrofia Generalizada Congênita/terapia , Lipodistrofia Parcial Familiar/diagnóstico , Lipodistrofia Parcial Familiar/terapia , Masculino , Pessoa de Meia-Idade , Músculos/patologia , Triglicerídeos/metabolismo , Adulto Jovem
17.
Metabolism ; 72: 109-119, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28641778

RESUMO

OBJECTIVE: Familial partial lipodystrophy (FPLD) is a rare genetic disorder characterized by partial lack of subcutaneous fat. METHODS: This multicenter prospective observational study included data from 56 subjects with FPLD (18 independent Turkish families). Thirty healthy controls were enrolled for comparison. RESULTS: Pathogenic variants of the LMNA gene were determined in nine families. Of those, typical exon 8 codon 482 pathogenic variants were identified in four families. Analysis of the LMNA gene also revealed exon 1 codon 47, exon 5 codon 306, exon 6 codon 349, exon 9 codon 528, and exon 11 codon 582 pathogenic variants. Analysis of the PPARG gene revealed exon 3 p.Y151C pathogenic variant in two families and exon 7 p.H477L pathogenic variant in one family. A non-pathogenic exon 5 p.R215Q variant of the LMNB2 gene was detected in another family. Five other families harbored no mutation in any of the genes sequenced. MRI studies showed slightly different fat distribution patterns among subjects with different point mutations, though it was strikingly different in subjects with LMNA p.R349W pathogenic variant. Subjects with pathogenic variants of the PPARG gene were associated with less prominent fat loss and relatively higher levels of leptin compared to those with pathogenic variants in the LMNA gene. Various metabolic abnormalities associated with insulin resistance were detected in all subjects. End-organ complications were observed. CONCLUSION: We have identified various pathogenic variants scattered throughout the LMNA and PPARG genes in Turkish patients with FPLD. Phenotypic heterogeneity is remarkable in patients with LMNA pathogenic variants related to the site of missense mutations. FPLD, caused by pathogenic variants either in LMNA or PPARG is associated with metabolic abnormalities associated with insulin resistance that lead to increased morbidity.


Assuntos
Resistência à Insulina , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/patologia , PPAR gama/genética , Adulto , Distribuição da Gordura Corporal , Estudos de Casos e Controles , Feminino , Humanos , Lamina Tipo B/genética , Lipodistrofia Parcial Familiar/complicações , Lipodistrofia Parcial Familiar/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Turquia
19.
J Lipid Res ; 58(1): 151-163, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27845687

RESUMO

Mutations in the lamin A/C gene encoding nuclear lamins A and C (lamin A/C) cause familial partial lipodystrophy type 2 (FPLD2) and related lipodystrophy syndromes. These are mainly characterized by redistribution of adipose tissue associated with insulin resistance. Several reports suggest that alterations in the extracellular matrix of adipose tissue leading to fibrosis play a role in the pathophysiology of lipodystrophy syndromes. However, the extent of extracellular matrix alterations in FPLD2 remains unknown. We show significantly increased fibrosis and altered expression of genes encoding extracellular matrix proteins in cervical subcutaneous adipose tissue from a human subject with FLPD2. Similar extracellular matrix alterations occur in adipose tissue of transgenic mice expressing an FPLD2-causing human lamin A variant and in cultured fibroblasts from human subjects with FPLD2 and related lipodystrophies. These abnormalities are associated with increased transforming growth factor-ß signaling and defects in matrix metalloproteinase 9 activity. Our data demonstrate that lamin A/C gene mutations responsible for FPLD2 and related lipodystrophies are associated with transforming growth factor-ß activation and an extracellular matrix imbalance in adipose tissue, suggesting that targeting these alterations could be the basis of novel therapies.


Assuntos
Tecido Adiposo/metabolismo , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Metaloproteinase 9 da Matriz/genética , Fator de Crescimento Transformador beta/genética , Tecido Adiposo/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Masculino , Metaloproteinase 9 da Matriz/biossíntese , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Fator de Crescimento Transformador beta/biossíntese
20.
Nucleus ; 7(5): 512-521, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27841971

RESUMO

A variety of missense mutations in LMNA (the gene for lamin C and prelamin A) cause familial partial lipodystrophy (FPLD), a disease associated with reduced adipose tissue, particularly in the limbs. Several studies have reported that fibroblasts from FPLD subjects have an accumulation of prelamin A. Those findings were intriguing but also perplexing because many of the LMNA missense mutations associated with lipodystrophy are located in sequences distant from the sequences required for the farnesylation of prelamin A and ZMPSTE24-mediated conversion of prelamin A to mature lamin A. Here, we revisited the issue of prelamin A accumulation in the setting of FPLD mutations. We used western blots with lamin A/C antibodies and prelamin A-specific monoclonal antibodies to assess prelamin A levels in wild-type fibroblasts and fibroblasts carrying LMNA mutations associated with lipodystrophy (R482W, I299V, C591F, T528M). None of the mutant fibroblasts exhibited an accumulation of prelamin A. Also, the amount of prelamin A accumulation in response to lopinavir (an inhibitor of ZMPSTE24) was similar in wild-type and mutant fibroblasts. Thus, the LMNA lipodystrophy mutations that we examined did not lead to prelamin A accumulation, nor did they render those cells more susceptible to prelamin A accumulation when ZMPSTE24 was inhibited by lopinavir.


Assuntos
Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutação de Sentido Incorreto , Sequência de Bases , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/patologia , Lopinavir/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...